Black-Scholes Model is Right, Option Market is Inefficient: A Robust Proof

نویسنده

  • Chen Guo
چکیده

This paper proves that the Black-Scholes model is not vulnerable to its assumption on the underlying process, because the same fundamental PDE can be derived by the possibility of continuously rebalancing a delta-gamma-neutral position, without assuming anything about the underlying process. Since the variance function of the PDE should be interpreted as the market price of convexity, it is not necessarily equal to the true variance function of the underlying process. In addition, since the delta-gamma-neutral strategy will earn definitively riskless arbitrage profits from the observed option prices that exhibit volatility smile, smirk, or term structure, it is conclusive that the Black-Scholes model is right, and the option market is inefficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

European option pricing of fractional Black-Scholes model with new Lagrange multipliers

In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to  btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...

متن کامل

Barrier options pricing of fractional version of the Black-Scholes ‎model‎

In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...

متن کامل

Numerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process

In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...

متن کامل

Modifying the Black-Scholes model to valuate preemption right

In this paper, we try and valuate preemption rights by modifying the Black-Scholes model, which is widely used to valuate options and other derivatives. Here we first present the basics of the Black-Scholes model and then we discus modification of the model to be fit for preemption right valuation. At the end, we valuate four of the preemptive rights using the proposed model

متن کامل

Valuation of installment option by penalty method

In this paper, installment options on the underlying asset which evolves according to Black-Scholes model and pays constant dividend to its owner will be considered. Applying arbitrage pricing theory, the non-homogeneous parabolic partial differential equation governing the value of installment option is derived. Then, penalty method is used to value the European continuous installment call opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999